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LElTER TO THE EDITOR 

Small g and large A solution of the Schrodinger equation for 
the interaction Ax2/(1 +gx2) 

Radhey Shyam Kaushal? 
Department of Physics, University of Kaiserslautern, 6750 Kaiserslautern, West Germany 

Received 1 June 1979 

Abstract. Using perturbation theory, asymptotic expansions are derived for the 
eigenenergies and eigenfunctions of the wave equation for the interaction Ax2/(1 + gx') in 
the range of small values of g and large values of A. The first few energy eigenvalues are 
calculated and found to be comparable with the non-perturbative results obtained recently 
by A K Mitra. 

The solution of the one-dimensional Schrodinger equation with a potential of the type 

V ( x )  =x2+Ax2/(1+gx2) (1) 
is required in different contexts. As pointed out by Biswas et a1 (1973), the Schrodinger 
equation with an interaction Lagrangian of the type Ax2/(1 +gx2)  becomes analogous 
to a zero-dimensional field theory with a non-linear Lagrangian. Another area where 
the solution of such a problem is required, as emphasised by Mitra (1978), is in laser 
theory, particularly when one deals with specific models. Furthermore, the reduction of 
the Fokker-Planck equation of a single-mode laser may also lead (see for example 
Haken 1970, Risken and Vollmer 1967) to such a Schrodinger equation under certain 
conditions. 

Recently Mitra (1978) has calculated the ground state and the first two excited state 
energy eigenvalues for this interaction by using the Ritz variational method in 
combination with the Givens-Householder algorithm. As there is a use of various 
quadrature formulae in his method, it involves a considerable amount of computer 
time, which becomes even longer if one also computes the eigenfunctions. In the 
present note, we solve this problem perturbatively and find that over a large range of 
h (=g/2(1 +A)" ' ) ,  large A asymptotic expansions also offer a good degree of accuracy. 

Here we use the perturbation procedure employed by Muller (1970) (and more 
recently by Aly et a1 1975) in a study of the Gauss potential. For the sake of 
completeness only the essential steps of the method are outlined. We start with the 
one-dimensional Schrodinger equation 

[-d'/dX2+ V ( X ) ] $  = E$ 
with the potential (l), which, for gx2 < 1 ( g  > 0), expressed as 

aD 

V ( X )  = (1 + Ax2) + ( -g ) iA~2( '+ ' )  
1-1 
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leads to the form 

where we have set 

h = g/2( 1 + A )‘Iz; k 2 = E ;  2 m = h = 1 .  (31 1/2  2 Z 2 = 2 ( 1 + A )  x : 

The expansion (1’) implies that we restrict ourselves to the domain gx2< 1. Our 
solution will therefore be that branch of the solution which is valid in this region. In 
other regions we have (Muller-Kirsten and Bose 1978, Muller-Kirsten ei a1 1978, 
Kaushal and Muller-Kirsten 1979) different branches (such as the WKB solutions) 
which can be shown to be analytically continuable to our branch (in analogy to the 
considerations in these works). These various pieces, however, are all associated with 
one and the same eigenvalue. Since we are here interested primarily in the eigenvalues, 
we do not discuss the other type of solutions and their matching. 

To the lowest order in h (when g + 0) we have 

q = k2/(1 

where i,br’(Z) = D1p(q-l)(Z) is a parabolic cylindrical function. The square integrabil- 
ity of $LIP’ demands that q be an odd integer, i.e. q = 2n + 1,  with n = 0 , 1 , 2 . .  . . In 
equation (2) we now set 

k2/ (1  = q + hA (4) 

where hA is of O(h) .  
Substituting equation (4) into equation (2) we obtain 

m 

9&= h{A+[A/2(1 + A ) ]  1 hi-’(-Z2)i}C/, 
i = 2  

In general we write 

where the coefficients S,(q, q +4j)  can be calculated from the repeated use of equation 
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(66). The lowest-order approximation leaves uncompensated the contribution 

Following the procedure discussed by Muller (1970), the first-order correction to the 
wavefunction is given by 

j # O  

provided [q, 411 = 0. Again, in the first order the uncompensated terms left are given by 

The higher-order corrections to the eigenfunctions, i.e. $k2), $:). . . are now obtained 
in a manner analogous to the derivation of $:). Then adding successive contributions 
we obtain 

$q=lll‘sO’+(Ib].)+(Lf)+. . . 
which apart from a normalisation constant can be written as 

m ( i + Z )  

i=O j=-(i+2) 
$q = hi+’ Ci(q9 j)$q+qj(Z) (12) 

where the coefficients Ci(4, j )  follow by comparison. For equation (12) to be a solution 
of equation (5 ) ,  the sum of the coefficients of t,bq in R?’, Rb].’ . . .-left uncompensated 
so far-must be set equal to zero, i.e. 

j # O  

j # O  j # O  

where the terms are arranged in the powers of h. This is the equation which determines 
A and hence the eigenvalues Eq. The coefficients [q, q + 4jli+* can be evaluated with the 
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help of equations (66), (7) and (9). Then 

” [ (q2  + 5)(20 + 3A ) + 18A]h2 3A(q2+ 1)  + 

4(1 +A)’/’ 16(1 
E E E, = q( 1 + A)’ /2  - 

-([35A/16(1 +A)’’’](q4+ 14q2+g) 

+[h2/16384(1 +A)’/’][(q - l)(q -3) 

~ { 1 9 2 ( 1  +A)(21q3 - 136q2+383q -420)+A[(q - 5 ) ( q  -7) 

x ( 3 5 q 2 - 3 0 4 q + 5 7 9 ) + 1 2 8 ( q - 2 ) ( q 3 -  18q2+44q-54)1} 

-(q+l)(q+3){192(1+A)(21q3+136q2+383q+420) 

-A[ (q+5) (q  +7)(35q2+304q+579)+ 192(q +2)’(q2+8q + 17)1}0) 

x h 3 + 0 ( h 4 ) .  (14) 

The expressions (12) and (14), representing the asymptotic expansions for the large 
values of A, are our main results. The solution (12) is valid for h < 1 and 121 d O(h-’”). 
While the first condition is obvious, the latter is obtained (Kaushal amd Muller-Kirsten 
1979) by demanding that the ratio of the ( i + l ) t h  and ith terms in equation (12) 
decrease at large 2 and for h + 0. In fact, the second condition, expressing the domain 
of validity in terms of the size of h, turns out to be consistent with gx2 < 1. Although it is 
not difficult to compute the eigenfunctions from equation (12), we evaluate here the 
terms in equation (14) only up to O(h3).  To check the quality of the approximation 
involved in these terms, we have calculated the first four energy eigenvalues for 
different sets of A and g. The results are shown in table 1, for 4 = 1 , 3 , 5  and 7 .  For small 
g (g d 0.2), as can be seen from this table, the results are comparable (up to the third 
decimal place) to those of Mitra (1978). However, for large g and small A ,  it is found 
that equation (14) underestimates the eigenenergies. 

On the other hand, it may be noted that equation (14) is an asymptotic expansion for 
large A and alternates in sign. For such cases there exists (Dingle 1973) a criterion to 
obtain an asymptotically correct value of the sum by terminating the power series. For 
this purpose the expansion is terminated at the least term (least in magnitude) and the 
last term is multiplied by 4. Using this criterion we find a considerable improvement 
over the results of equation (14) for large g. The results corresponding to g = 0.5,0.8 
and 1-0 in table 1 are given after accounting for such a correction. Further improve- 
ment in these results is possible by using Dingle’s convergence factors (Dingle 1973). 
However, such corrections are rather involved and may be estimated when one applies 
the potential (1) to a specific problem. 

Finally, it may be mentioned that with a little modification the results of this paper 
can be applied to anharmonic perturbations of the type 

where a is taken to be small (<1) and R = 2 , 3 , 4  . . . . In the last two cases one has to 
proceed with a single term on the right-hand side of equation (2). 

It is a pleasure to thank H J W Miiller-Kirsten for comments and suggestions. 
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